FANDOM


Uranium2

Uranio grezzo

L'uranio (dal greco οὐρανός, "cielo") è l'elemento chimico di numero atomico 92. Il suo simbolo è U. È un metallo bianco-argenteo, tossico e radioattivo; appartiene alla serie degli attinoidi ed il suo isotopo 235U trova impiego come combustibile nei reattori nucleari e nella realizzazione di armi nucleari.

Tracce di uranio sono presenti ovunque: nelle rocce, nel suolo, nelle acque, persino negli organismi viventi.

Arricchimento dell'uranio Modifica

Per ottenere un materiale fissile che sia adatto a scopi nucleari, cioè che emetta una quantità sufficiente di neutroni, è necessario aumentare la concentrazione dell'isotopo 235U rispetto al più comune e meno radioattivo 238U. La concentrazione di 235U deve passare dallo 0,71% a valori superiori al 3% per i reattori nucleari ad acqua leggera LWR.

Il processo di concentrazione dell'uranio è un compito estremamente difficile: non è possibile separarli per via chimica, essendo due isotopi dello stesso elemento, e l'unico modo è sfruttare la piccolissima (meno dell'1,5%) differenza di peso.

Per fare questo si fa reagire l'uranio metallico con fluoro ottenendo esafluoruro di uranio (UF6), un composto solido bianco, che sublima in fase gassosa al di sopra di 56,4 °C.

Questo composto in fase gassosa è usato nei due più comuni processi di arricchimento, l'arricchimento per diffusione gassosa (utilizzata soprattutto negli Stati Uniti) e quello per centrifuga a gas (principalmente utilizzato in Europa). Allo stato attuale è in corso di sviluppo presso il Dipartimento dell'Energia americano una terza tecnologia di arricchimento chiamato a separazione laser, ancora in fase di studio. Un quarto metodo di arricchimento è quello della separazione termica, che però è meno efficiente delle tecnologie attuali e non è più utilizzato.

Dopo l'arricchimento l'esafluoruro è decomposto, riottenendo uranio metallico e fluoro gassoso, dopodiché è ossidato a formare diossido di uranio UO2.

Il processo di arricchimento produce grandi quantità di uranio impoverito, ossia uranio cui manca la corrispondente quantità di 235U. L'uranio si considera impoverito quando contiene valori di 235U generalmente compresi tra lo 0,2% e lo 0,3%, a seconda delle esigenze economiche e di produzione.

Per dare un'idea della tipica proporzione tra uranio arricchito e uranio impoverito, da 100 kg di uranio metallico pronto per l'arricchimento si possono ottenere al massimo 12,5 kg di uranio arricchito al 3,6% e 87,5 kg di uranio impoverito allo 0,3%.

L'uranio impoverito è generalmente stoccato come UF6 (che, come detto sopra, è un solido cristallino) amalgamato in cilindri di acciaio che ne contengono circa 12-13 tonnellate (secondo le procedure standard degli Stati Uniti).

Applicazioni Modifica

L'uranio trova applicazione in due sue possibili forme: uranio arricchito ed uranio impoverito. Non è semplice fare una distinzione netta tra applicazioni civili e militari, in quanto esiste una permeabilità tra questi due utilizzi. Ad esempio, l'uranio arricchito può essere usato come combustibile nei reattori nucleari civili, ma anche nei reattori nucleari dei sottomarini e delle portaerei militari a propulsione nucleare.

Applicazioni civili Modifica

Nuclear plant at Grafenrheinfeld

Centrale nucleare tedesca

L'uranio è un metallo molto denso e pesante. Nonostante la sua radioattività naturale, grazie al suo elevato peso specifico, trova impiego come materiale di zavorra e contrappesi di equilibratura in aerei, elicotteri, e in alcune barche a vela da regata. A volte è impiegato anche per costruire schermature di sorgenti altamente radioattive (soprattutto nel campo della radiografia industriale per la schermatura dei raggi gamma). Il piombo è un materiale con caratteristiche simili (e non radioattivo).

Nel settore civile il principale impiego dell'uranio è l'alimentazione dei reattori delle centrali elettronucleari, dove è usato un uranio arricchito al 3-4% di 235U. Le tipologie di reattori ad acqua pesante, come il CANDU ed in generale i PHWR possono sfruttare l'uranio naturale come combustibile, senza quindi bisogno di preventivo arricchimento.

Tra gli altri usi si annoverano:

  • l'inclusione di sali di uranio nelle ceramiche e nei vetri, per colorare le prime e impartire una fluorescenza gialla o verde ai secondi;
  • la datazione delle rocce ignee ed altri metodi di datazione geologica quali la datazione uranio-torio e uranio-piombo attraverso la misura della concentrazione di 238U, la cui emivita è di circa 4,51 miliardi di anni;
  • l'acetato di uranile, UO2(CH3COO2), trova impiego in chimica analitica; forma con il sodio un sale insolubile;
  • il nitrato di uranio è usato in fotografia;
  • in chimica l'uranio è utilizzato come catalizzatore in alcune reazioni;
  • i fertilizzanti fosfatici di origine minerale possono contenere quantità di uranio relativamente alte, se questo è presente come impurezza nei minerali di partenza;
  • l'uranio metallico trova uso in dispositivi a guida inerziale e nelle bussole giroscopiche.

In tutte queste applicazioni (tranne che per l'uso come combustibile nelle centrali nucleari) non è importante che si utilizzi uranio naturale oppure uranio impoverito. Ad ogni modo, il Dipartimento dell'Energia americano Template:Cn che tutti gli impieghi civili dell'uranio non sono finora riusciti a ridurre in modo sostanziale le scorte di uranio impoverito accumulate negli ultimi decenni dalle centrali nucleari di tutto il mondo. Gran parte dell'uranio impoverito è quindi dirottato sul settore militare oppure è stoccato in permanenza in depositi del sottosuolo.

Un altro sottoprodotto importante dell'uranio è il plutonio 239, che è prodotto dalle reazioni nucleari che hanno luogo nella fertilizzazione del 238U contestualmente alla fissione del 235U all'interno dei reattori nucleari. Il plutonio (a weapons grade) è utilizzato per costruire ordigni nucleari e/o come combustibile nei reattori nucleari.

Cenni storici Modifica

L'uso dell'uranio, sotto forma del suo ossido, risale ad almeno al 79 a.C.; risalgono ad allora alcuni manufatti in ceramica colorati di giallo per aggiunta dell'1% di ossido di uranio rinvenuti in scavi nella zona di Napoli.

L'uranio è stato scoperto nel 1789 dallo scienziato tedesco bavarese Martin Heinrich Klaproth, che lo individuò in un campione di pechblenda.

L'elemento prese il nome dal pianeta Urano, che fu scoperto otto anni prima dell'elemento.

L'uranio fu isolato come metallo nel 1841 da Eugène-Melchior Péligot ed è del 1850 il primo impiego industriale dell'uranio nel vetro, sviluppato dalla Lloyd & Summerfield di Birmingham, nel Regno Unito.

La radioattività dell'uranio fu osservata per la prima volta dal fisico francese Henri Becquerel nel 1896.

Ricerca ed estrazione Modifica

KarteUrangewinnung

Principali paesi estrattori di uranio

L'esplorazione e l'estrazione di minerali radioattivi iniziò negli Stati Uniti al principio del XX secolo (anche se le prime estrazioni per fini economici avvennero nella Repubblica Ceca alla fine del XIX secolo). I sali di radio, contenuti nei minerali dell'uranio, erano ricercati per il loro impiego in vernici fluorescenti da usarsi per quadranti di orologi ed altri strumenti, nonché per applicazioni mediche - rilvelatesi nei decenni successivi particolarmente insalubri.

La domanda di uranio crebbe durante la seconda guerra mondiale, durante la corsa delle nazioni in guerra alla realizzazione della bomba atomica. Gli Stati Uniti sfruttarono i loro giacimenti di uranio localizzati in numerose miniere di vanadio del sud-ovest ed inoltre acquistarono l'uranio dal Congo (all'epoca colonia belga) e dal Canada.

Le miniere del Colorado fornivano principalmente miscele di minerali di uranio e di vanadio (carnotite) ma, per via della segretezza applicata nel periodo bellico, solo quest'ultimo figurava pubblicamente come prodotto delle miniere. In una causa legale condotta molti anni più tardi, i lavoratori di quelle miniere si sono visti riconosciuti risarcimenti per le indennità loro dovute e mai pagate previste per l'estrazione di materiale radioattivo.

I minerali di uranio delle miniere americane non erano ricchi quanto quelli del Congo belga, ma venivano comunque estratti nello sforzo di raggiungere un'autosufficienza produttiva. Sforzi simili furono condotti dall'Unione Sovietica, anch'essa priva di scorte di uranio all'inizio del suo programma nucleare. In alcuni impianti in Europa e in Russia è attualmente in atto un processo di riarricchimento dell'uranio impoverito. In questi impianti un trattamento a centrifuga dell'uranio impoverito riduce ulteriormente la concentrazione di 235U in gran parte del materiale, producendo una piccola percentuale di uranio con contenuto "naturale" (0,71%) di 235U. L'uranio naturale così ottenuto può nuovamente essere inviato alle centrali nucleari per il processo di arricchimento.

Ascesa, stagnazione e nuovo boom dell'estrazione dell'uranio - Costi Modifica

Ranger Uranium Mine in Kakadu National Park.jpeg

Miniera di uranio a Kakadu National Park in Australia

La ricerca dell'uranio nel mondo trovò un grande impulso all'inizio della guerra fredda; gli Stati Uniti, al fine di garantirsi adeguate forniture di uranio da destinare alla produzione di armi, crearono nel 1946 la Atomic Energy Commission (AEC), incaricata di esplorare potenziali giacimenti per conto dello stato e di intervenire sul prezzo di mercato dell'uranio. L'AEC, fissando un prezzo elevato per i minerali di uranio, contribuì ad un vero e proprio boom nei primi anni cinquanta.

Giacimenti furono scoperti nello Utah nel 1952, anche se la concentrazione di uranio era comunque inferiore a quella osservata in campioni provenienti dal Congo belga o dal Sudafrica: al picco dell'euforia mondiale per l'energia nucleare - negli anni cinquanta - furono anche presi in considerazione metodi per estrarre l'uranio e il torio dai graniti e dalle acque marine.

La domanda da parte dell'apparato militare statunitense iniziò a declinare negli anni sessanta e le scorte di uranio furono completate entro la fine del 1970; nel contempo iniziò ad emergere il mercato dell'uranio per usi civili, ovvero per la realizzazione delle centrali elettriche termonucleari.

Negli Stati Uniti tale mercato collassò nell'arco di un decennio, come risultato di diversi fattori concomitanti, tra cui la crisi energetica, l'opposizione popolare e l'incidente alla centrale di Three Mile Island nel 1979, che portò ad una moratoria de facto dello sviluppo delle centrali nucleari.

Il prezzo dell'uranio nei due decenni successivi continuò a declinare, per una serie di fattori concomitanti. I principali fattori furono il disastro di Chernobyl e la crisi e la dissoluzione dell'Unione Sovietica. L'esplosione dell'impianto di Chernobyl ebbe un forte impatto psicologico in tutto il mondo, provocando una riduzione o un blocco totale nei progetti di costruzione di nuovi impianti nucleari. Negli ultimi anni di esistenza dell'Unione Sovietica, per far fronte alla crescente crisi economica, questo paese mise in vendita grosse quantità di ossido di uranio, in un mercato già saturo per gli scarsi investimenti provocati dall'incidenti di Chernobyl, contribuendo a deprimere ulteriormente i prezzi.

Nella seconda metà degli anni novanta, i trattati per la non proliferazione nucleare tra la Russia e gli Stati Uniti portarono all'accordo Megaton contro Megawatt (1995), che vide lo smantellamento di moltissime testate nucleari sovietiche e la vendita come combustibile dell'ossido di uranio da esse ricavabile. Il conseguente e ulteriore aumento dell'offerta ha prodotto un fortissimo ribasso nei prezzi fino alla fine del secolo.

Nonostante il fatto che in molti paesi Europei - Francia, Germania, Spagna, Svezia, Svizzera, Regno Unito - all'iniziale riduzione dei piani di sviluppo del nucleare civile sia in seguito corrisposta una nuova fase di costruzione e ammodernamento delle centrali nucleari, per lungo tempo l'offerta di combustibile nucleare ha fortemente ecceduto la domanda.

Dal 1981 i prezzi per l'ossido di uranio U3O8 registrati dal Dipartimento per l'Energia degli Stati Uniti sono stati in continuo calo fino all'anno 2000: da 32,90 $/lb di U3O8 del 1981 a 12,55 $/lb nel 1990 a meno di 10 $/lb nel 2000. Il minimo valore del prezzo dell'uranio si è raggiunto nel 2001 a meno di 7 $/lb[1].

Negli ultimi anni (2001-2006) la richiesta mondiale di uranio è fortemente aumentata. Template:Cn Per soddisfare la crescente domanda molti paesi consumatori e produttori hanno iniziato ad intaccare le cosiddette fonti secondarie di uranio, ossia le scorte accumulate in deposito nei decenni precedenti.

Come risultato il prezzo dell'uranio sul mercato mondiale ha subìto una forte impennata, passando dai 7 $/lb del 2001 al picco di 135 $/lb del 2007[2]. Al 2001 il prezzo dell'uranio incideva per il 5-7% sul totale dei costi riguardanti la produzione di energia nucleare[3]. Secondo dati della WNA, a gennaio 2010, con uranio a 115$/kg e considerandolo sfruttato da reattori attualmente in funzione, questo incide per circa il 40% sul costo del combustibile, che incide per circa 0.71c$ sul costo di generazione di ogni kWh.[4]

Rischi associati all'estrazione Modifica

Dato che l'uranio emette radon, un gas radioattivo, nonché altri prodotti di decadimento altrettanto radioattivi, l'estrazione mineraria di uranio presenta pericoli ulteriori che si sommano a quelli già esistenti nell'attività del minatore. Le miniere di uranio che non siano "a cielo aperto" richiedono adeguati sistemi di ventilazione per disperdere il radon.

Durante gli anni cinquanta molti dei minatori statunitensi impiegati nelle miniere di uranio erano nativi Navajos, dato che molte delle miniere erano collocate nelle loro riserve. A lungo andare molti di essi svilupparono forme di cancro al polmone. Alcuni di loro e dei loro discendenti sono stati beneficiari di una legge che nel 1990 ha riconosciuto il danno loro arrecato.

Tuballoy e Oralloy Modifica

Durante il lavoro del Progetto Manhattan, esigenze di segretezza fecero adottare i nomi di tuballoy e oralloy per riferirsi rispettivamente all'uranio naturale e all'uranio arricchito. Questi nomi sono ancora occasionalmente usati oggi.

Disponibilità in natura Modifica

L'uranio è un elemento che si rinviene nella crosta terrestre, in basse concentrazioni, praticamente in tutte le rocce, in tutti i terreni e nelle acque. È considerato più abbondante dell'antimonio, del berillio, del cadmio, dell'oro, del mercurio, dell'argento, del tungsteno; ha circa la stessa abbondanza dell'arsenico e del molibdeno.

Si trova come elemento costitutivo principale in alcuni minerali [5] , come l'uraninite (o pechblenda, il minerale di uranio più comune), l'autunite, la carnotite, l'uranofano, la torbernite e la coffinite. Si possono riscontrare concentrazioni di uranio significative anche in alcuni giacimenti come i depositi di rocce fosfatiche, sabbie ricche in monazite in cui l'uranio è presente come vicariante del fosforo (è estratto commercialmente anche da queste fonti). Particolarmente ricche le sabbie delle dune del Niger.

Si ipotizza che la principale fonte del calore che mantiene liquido il nucleo della Terra e il soprastante mantello provenga dal decadimento dell'uranio e dalle sue reazioni nucleari con il torio nel nucleo della terra, generando così la tettonica a zolle.

I minerali di uranio, perché l'estrazione mineraria di uranio sia remunerativa, devono contenere una concentrazione minima di ossido di uranio U3O8 che va dallo 0,05% al 0,2%.

Produzione e distribuzione Modifica

U resources

Risorse di uranio nel mondo certe ed ipotizzate ad un prezzo <130$/kg per Stato

MonthlyUraniumSpot

Andamento del prezzo dell'uranio da NUEXCO Exchange Value Monthly Spot (US$/lb U3O8). Nel 2007 c'è stato un picco.

L'uranio è prodotto industrialmente per riduzione dei suoi alogenuri con metalli alcalini o alcalino-terrosi. Può anche essere prodotto per elettrolisi di KUF5 o UF4 sciolti in CaCl2 o NaCl fuso. L'uranio metallico ad alta purezza è ottenuto per decomposizione termica di alugenuri di uranio su un filamento rovente.

Da 1 kg di ossido di uranio si ricavano circa 840 g di uranio metallico adatto al processo di arricchimento.

Secondo il Red Book della IAEA del 2009, le riserve accertate ed ipotizzate di uranio ad un prezzo di 130$/kg ammontano a circa 5,4 milioni di tonnellate di uranio. Nel 2009 la produzione di ossido di uranio è stata di 50.572 tonnellate, che corrispondono al 76% della domanda mondiale di combustibile[6], il rimanente 24% è stato fornito da combustibile esausto riprocessato e trasformato in MOX, testate nucleari smantellate, riserve di uranio già estratte.

L'uranio è distribuito sul pianeta in maniera abbastanza uniforme; è presente nella crosta terrestre in concentrazioni minime ovunque, la concentrazione media di uranio nella crosta terrestre è di 2.8ppm, nel granito è 4-5ppm e nell'acqua di mare è 3ppb. Tre soli paesi (l'Australia, il Canada e il Kazakistan) contengono circa il 58% delle riserve note economicamente estraibili attualmente. Questi tre paesi sono anche i principali produttori di uranio (dati 2009).

L'Australia possiede ampi giacimenti (formati soprattutto da carnotite), che rappresentano circa il 28% delle riserve del pianeta. La sua produzione è aumentata di quasi il 40% negli ultimi 4 anni (7982 tonnellate di uranio metallico estratte nel 2009), quasi raggiungendo il Canada. Il più grande singolo deposito di uranio del mondo è presso la Olympic Dam Mine nello stato dell'Australia Meridionale, che però non è classificata miniera uranifera, essendo l'uranio un sottoprodotto dell'estrazione mineraria dal sito. In Australia si trovano la seconda e la quinta miniera di uranio per estrazione (rispettivamente la miniera Ranger, che è la maggiore miniera di uranio a cielo aperto del mondo, e la già citata Olympic Dam). L'Australia ha in progetto di triplicare l'estrazione di uranio dalla Olympic Dam nei prossimi anni.

Il Kazakhstan ha aumentato del 55% l'estrazione di uranio negli ultimi 4 anni, passando dal quinto al primo posto nei produttori dal 2002 al 2009 (2800 tonnellate di uranio metallico estratte nel 2002 a oltre 13.900 tonnellate del 2009). Attualmente è in progetto l'apertura di 7 nuove miniere nel sud del paese. Si stima che il territorio del Kazakhstan contenga riserve note di ossido di uranio per 750.000 tonnellate, il 18% del totale, e che altrettante siano ancora da scoprire nel sottosuolo di questo paese.

Il Canada possiede ricchi giacimenti in Saskatchewan (formati soprattutto da pechblenda costituiscono il 12% delle riserve mondiali), dove dalle tre miniere del McArthur River, del Rabbit Lake e del McClean Lake si estrae circa il 28% della produzione mondiale (9000 tonnellate nel 2008, più o meno costante negli ultimi anni). La miniera del McArthur river è anche la più grande miniera di uranio del mondo. Le altre due miniere sono relativamente recenti e si ritiene che la loro produzione dovrebbe aumentare significativamente nei prossimi anni. Inoltre il Canada dovrebbe aprire due nuove miniere (Cigar Lake e Midwest) nel 2007. Questa sovrapproduzione unita al controllo governativo sulla produzione ha un forte peso nel determinare il prezzo dell'uranio sui mercati internazionali.

Gli altri principali paesi estrattori sono la Russia (10% delle riserve mondiali e 3564 tonnellate estratte nel 2009), la Namibia (5% riserve e 4626 tonnellate estratte con la miniera a cielo aperto di Rossing, la quarta del mondo), il Niger (5% riserve e 3243 tonnellate), l'Uzbekistan (2% riserve e 2429 tonnellate) e gli Stati Uniti (6% riserve e 1453 tonnellate, concentrati negli stati del Wyoming e del Nebraska).

Giacimenti importanti e poco sfruttati si trovano in Sudafrica (che ha l'8% delle riserve mondiali ed ha appena iniziato a sfruttarle con il sistema del reattore a letto di ciottoli), in Brasile (5% delle riserve) e in Mongolia (1% delle riserve). I depositi di minerali di uranio scoperti più di recente (2008) si trovano in Canada, India centrale, Nigeria e Zimbabwe, Stati Uniti, mentre è stata alzata la produttività di alcune miniere spagnole.

Esplorazioni e prospezioni per individuare nuovi giacimenti sono in corso in Canada, Sudafrica, Kazakhstan, Mongolia e nella Repubblica Democratica del Congo.

Giacimenti in Italia Modifica

Template:Vedi anche In Italia, a partire dagli anni '50 e poi più assiduamente nei '60, furono effettuate ricerche di giacimenti sfruttabili di uranio estese a buona parte del territorio nazionale. Il più importante giacimento fu rinvenuto dall'ENI (poi AGIP) nei pressi di Novazza (a circa 40 km a nord est di Bergamo). Si trattava di un giacimento di dimensioni ridotte e già negli anni '60 non fu giudicato in grado di coprire il fabbisogno delle centrali allora esistenti.

Note Modifica

  1. Serie storica dei prezzi dell'uranio a cura della Ux Consulting Company, in dollari correnti e normalizzata rispetto al valore del dollaro nel 2007
  2. Dati finanziari tratti da http://www.cameco.com/investor_relations/ux_history/historical_ux.php
  3. Parere del comitato consultivo dell'Agenzia di approvvigionamento Euratom sul Libro verde della Commissione "Verso una strategia europea di sicurezza dell'approvvigionamento energetico", G.U. n. C 330 del 24/11/2001 pag. 0015 - 0020
  4. Template:Enhttp://www.world-nuclear.org/info/inf02.html
  5. Quindi presente nella formula chimica che definisce il minerale
  6. Template:En http://www.world-nuclear.org/info/inf23.html

Bibliografia Modifica

Voci correlate Modifica

Collegamenti esterni Modifica

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Inoltre su FANDOM

Wiki casuale